
Testing Environment for Accessing and Monitoring
Networked Automation and Measurement Equipment

Antonio Montoya
Christian Hurst Ben Wiggins
Braden Rosengren Chris Little

Project Background

Purpose/Problem Statement

In this project, we aim to:
● Develop remote hardware test automation and monitoring capabilities
● Develop an API for user-expandable hardware support
● Provide inexpensive alternative to more costly automation solutions
● Demonstrate conceptual viability of standardized system
● Present plan for creating an open source platform

Project Vision

For illustration purposes only

Market Survey & Usage Target

● Saw a need for remote test hardware automation in both academia and
industry

● Wanted a testing platform usable independent of the user environment
○ Prevent driver/PC hardware compatibility issues
○ Prevent updates from changing user’s environment

● Current GPIB interfaces may be economically infeasible for those with smaller
budgets

Project Requirements

● Web server and browser-based UI/UX
● Raspberry Pi must interface with lab equipment
● Raspberry Pi must initialize all required processes on startup
● PCB breakout board for Pi to chip communication
● Creation of a variable logic level shifter for SPI, I2C and GPIO busses
● Create a guide for writing tests and supporting additional test equipment
● Demonstrate proof of concept and potential usage cases

Constraints & Considerations

● We need to create a cost-effective platform
● The remote interface should be cross-platform compatible
● We need to support GPIB commands over IEEE-488, USB, and Ethernet
● Enable users to create and execute custom tests

Project Design

Functional Description

Detailed Design (Modular design specifics)

PC UI/UX
● Apache Web Server with Python CGI backend
● Browser-based design ensures cross-platform compatibility

Breakout Board
● Level shifters allow communication with extended range of DUTs

USB to GPIB Connector
● Allows control of test equipment over IEEE 488 bus

Test API
● Allows users to easily define and implement their own tests
● Streamlines storage and retrieval of results

Browser-Based Interface

Interface showing test
queue (left) and server
log (right) demonstrate
the web server.

Variable Level Shifter Breakout
Rev. 2 Breakout Rev. 3 Design

Resource & Cost Projection

● Raspberry Pi 3 Model B - $35.69 (Amazon.com)
● Prologix GPIB-USB Controller - 149.95 (Prologix.biz)
● Custom breakout board - TBD
● Free and open source software

http://prologix.biz/images/detailed/0/GPIB-USB-front.jpg
https://www.raspberrypi.org/wp-content/uploads/2016/02/Pi_3_Model_B
.png

Design Process

Early Platform Design

● Wanted platform to be consistent between users
○ Web server and browser-based interface allows cross-platform compatibility
○ Raspberry Pi standardizes computer hardware and software to prevent incompatibilities

● Wanted platform to be remotely accessible
○ Web-based design means server can be accessed from anywhere on the network

● Needed to be able to control testing equipment
○ GPIB over the IEEE 488 bus is common and appeared a good place to begin

● DUTs may operate at voltages other than that of the Raspberry Pi
○ DUTs may require digital configuration inputs
○ Variable level shifter for GPIO allows for a greater range of functionality

Selecting a GPIB (IEEE 488) to USB Adapter
NI GPIB-USB-HS+ :

● Sold by National Instruments
● $611.00
● Complicated process to support on linux
● Full feature support requires Expensive

software
● High Level abstraction is supported

through expensive software

PROLOGIX GPIB-USB Controller :

● Sold by Prologix
● $149.95
● Presents itself as a simple USB serial port
● Support is built into the kernel

● Support for high level abstraction of
functionality needs to be built out

Designing the Server

● Chose Apache server as the web server
○ CGI support allows dynamic content generation with Python
○ Easy to install/use
○ Requires CGI scripts to complete execution before user is sent content

● Chose to implement Python-based application for test runner
○ Need separate process to manage test execution
○ Sends data to CGI scripts for user interface

● Process must communicate with web server to allow user to see tests
○ Named pipes vs. Unix sockets
○ Unix sockets are nonblocking and bidirectional, unlike named pipes
○ Unix sockets can implement client/server design using TCP or UDP

Designing the Level Shifter

Utilized BSS138 to achieve bi-directional
level shifting of GPIO pins on Pi-board from
3.3V to an externally supplied reference voltage,
selected to match DUT’s VDD.

Designing the Hardware API

● API must be extensible to allow users to add support for new test equipment
○ Goal is to launch an open source project for 3rd party collaboration on building out library of

supported devices compatible with a standard API.

● Need a standardized way to interact with hardware
● Interpreted markup helps to mitigate software malfunctions

Project Testing

Module P.O.C. Tests

● Verified GPIB communication from Raspberry Pi to signal generator
● Verified dynamic content generation with Python CGI scripts
● Verified proposed level shifter schematic
● Verified PCB functionality
● Verify I2C communication
● Implement EE 230 lab test case

Software Verification: GPIB Hardware Control

https://docs.google.com/file/d/0BzdXKQwxCn1Jay1yWlBtcS1STkU/preview

Hardware Verification: Level Shifter

https://docs.google.com/file/d/0BzdXKQwxCn1JTWFYTzNOTmNUbWc/preview

Planned Test Cases

● Demonstrate level shifter and bus support with I2C and
SPI compatible chips

● Use a previously verified DAC voltage drift test on an
I2C DAC IC and monitor the results with the system

● Demonstrate data acquisition in the context of a EE 230
lab

http://www.ti.com/graphics/folders/partimages/DAC6574.jpg

Questions?

