TEAMNAME MAY1733

Testing Environment for Accessing and Monitoring
Networked Automation and Measurement Equipment

Antonio Montoya
Christian Hurst Ben Wiggins
Braden Rosengren Chris Little

Advisor/Client
Dr. Geiger

Slides Available on our website at: http://may1733.sd.ece.iastate.edu/

4
N

Project Background

Purpose/Problem Statement

Our purpose in this project is to:
e Develop remote hardware test automation with monitoring capabilities
e Develop an API (Application Program Interface) for user-expandable hardware
support
e Provide inexpensive alternative to more costly automation solutions
e Demonstrate conceptual viability of standardized system

Project Vision

For illustration purposes only

Market Survey & Usage Target

e Saw a need for remote test hardware automation in both academia and
industry
e Wanted a testing platform usable independent of the user environment

o Prevent driver/PC hardware compatibility issues
o Prevent updates from changing user’'s environment

e Current GPIB interfaces may be too expensive for those with smaller budgets

Project Requirements

Web server and browser-based Ul/UX

Raspberry Pi must interface with lab equipment

Raspberry Pi must initialize all required processes on startup

PCB breakout board for Pi to chip communication

Creation of a variable logic level shifter for SPI, I2C and GPIO busses
Create resources for writing tests and supporting additional test equipment
Demonstrate proof of concept and potential usage cases

Constraints & Considerations

We need to create a cost-effective platform
The remote interface should be cross-platform compatible
We need to support GPIB commands over IEEE-488, USB, and Ethernet
Enable users to create and execute custom tests
o Using a simple widely known scripting language (Python)
e Make the design system to be easily extensible

o Add previously unsupported test equipment to the API
o Easily write new test scripts

Project Design

Functional Description

IEEE-488, USB, Network

Web Server Test Runner
Test Queue Test API

Results/Data User Settings

Browser-Based Ul

Detailed Design (Modular design specifics)

PC Ul/UX
e Web Server with Python backend
e Browser-based design ensures cross-platform compatibility

Breakout Board
e Level shifters allow communication with extended range of DUTs
USB to GPIB Connector
e Allows control of test equipment over IEEE 488 bus
Test Writing API
e Allows users to easily define and execute their own tests
e Streamlines storage and retrieval of results

Browser-Based Interface

|4 control Pannel
€ @ localhost @ [|Q searc B & =

EBookmarksv |Hteamname

T.E.A.M.N.A.M.E.

[Results: Read RMS Voltage

0.007

-variable: | v_set[9] ~ | y-variable: | v_in_rms[9] ~ | Save SVG Save CSV
ooooo

Interface showing the
in-browser result viewer
demonstrates the web
server's functionality.

Variable Level Shifter Breakout

Rev. 3 Breakout Rev. 3 Design

Design Process

Designing the Server

e Chose lighttpd server as the web server

o CGl support allows dynamic content generation with Python
o Easy toinstall/use (supported in Buildroot)
o Requires CGI scripts to complete execution before user is sent content

e Chose to implement Python-based application for test runner

o Need separate process to manage test execution
o Sends data to CGl scripts for user interface

Designing the Level Shifter LU Hu

Utilized BSS138 to achieve bi-directional . T
level shifting of GPIO pins on Pi-board from
3.3V to an externally supplied reference voltage,
selected to match DUT's VDD.

Designing the Hardware Driver/AP| Scheme

API| must be extensible to allow users to add support for new test equipment
Provided tools allow streamlined development of 3rd party drivers

User generated content limited to IEEE standard GPIB strings for device
Newly generated drivers can be comprehensive for public use or custom
made for a single use

Project Testing

Module P.O.C. Tests

Verified GPIB communication from Raspberry Pi to signal generator
Verified dynamic content generation with Python scripts

Verified proposed level shifter schematic

Verified populated PCB functionality

Implement EE 230 lab test case

Project Demonstration

e 1 - B
. "- ., . - = = -"'“"-..‘
\@ =

.-._a "‘p‘q:lq-f __;;:! i

https://docs.google.com/file/d/0B5rJJ8LgA1EfSERUdmpsWnd6RWM/preview

Questions?

Resource & Cost Projection

http://prologix.biz/images/detailed/0/GPIB-USB-front.jpg
https://www.raspberrypi.org/wp-content/uploads/2016/02/Pi_3_Model_B

Raspberry Pi 3 Model B - $35.69 (Amazon.com)
Prologix GPIB-USB Controller - $149.95 (Prologix.biz)

o While this is the largest cost component, new equment has USB interfaces that make this
part obsolete

Custom breakout board - Approx. $5
Free and open source software

Selecting a GPIB (IEEE 488) to USB Adapter

NI GPIB-USB-HS+ :

Sold by National Instruments

$611.00

Complicated process to support on linux
Full feature support requires Expensive
software

High Level abstraction is supported
through expensive software

PROLOGIX GPIB-USB Controller :

Sold by Prologix

$149.95

Presents itself as a simple USB serial port
Support is built into the kernel

Support for high level abstraction of
functionality needs to be built out

Early Platform Design

e Wanted platform to be consistent between users

o Web server and browser-based interface allows cross-platform compatibility

o Raspberry Pi standardizes computer hardware and software to prevent incompatibilities
e Wanted platform to be remotely accessible

o Web-based design means server can be accessed from anywhere on the network

e Needed to be able to control testing equipment
o GPIB over the IEEE 488 bus is common and appeared a good place to begin

e DUTs may operate at voltages other than that of the Raspberry Pi
o DUTs may require digital configuration inputs
o Variable level shifter for GPIO allows for a greater range of functionality

Driver Generation: User Written File

Keysight28xx #DEVICE_NAME

xx Family of Oscilloscopes #DEVICE DESCRIPTION
Oscilloscope #DEVICE_TYPE
IEEE-488 #DEVIC NNECTION
Keysight20xx.py #TARGET_FILE

#END_HEADER
#NOTES SECTION

##START_DEFINES

_clear_status {clear_device_ status} HGLS
_event_status_enable @ {enable event status {check ESE state}} *ESE <mask_argument>
_check_device_id Q0 {get _device_id check device_id} *IDN?

F#HEND

/{_example function {desired user alias functions {query alias}} :GPIB:COMMand:FOR:FUNCtion <required input values> [Optional Arguments {available inputs_to_required arg}]
() ~ place a 'Q"' here to also generate a query version of the function

1/ use "Q0' for query only

Driver Generation: Command List & Python Code

#H#START_DEFINES

_clear_status {clear_device status} *CLS

_event status _enable @ {enable event status {check ESE state}} *ESE <mask_argument>
_check_device id Q0 {get_device id check device_ id} *1DN?

H#HEND

def Keysight28xx clear status(GPIB Context):
command LS
GPIB_Context.send(device_data, command) ‘clear device status' : Keysight28xx clear status,

‘check ESE state® : Keysipght208xx_event_status_enable guery,
‘enable_event status' : Keysight20xx_event status_enable,
Keysight28xx event status enable(GPIB Context): ‘get_device id' : Keysight28xx check device id,
command LEESE! *check device id' : Keysight28xx check device id
GPIB_Context.send(device data, command)

L

DT F

Keysight28xx_event status enable query({GPIB Context):
command HEESEST
GPIE Context.send(device data, command)

GPIB Context.read(device data)

Keysight28xx check device id(GPIB Context):

command "XTDN2"

GPIB Context.send({device data, command)
GPIB Context.read(device data)

Software Verification: GPIB Hardware Control

https://docs.google.com/file/d/0BzdXKQwxCn1Jay1yWlBtcS1STkU/preview

Hardware Verification: Level Shifter

-

https://docs.google.com/file/d/0BzdXKQwxCn1JTWFYTzNOTmNUbWc/preview

Future Test Cases: Project Continuation

e Demonstrate level shifter and bus support with 12C and
SPI compatible chips

e Use a previously verified DAC voltage drift test on an
|2C DAC IC and monitor the results with the system

e Demonstrate data acquisition in the context of a EE 230
lab

http://www.ti.com/graphics/folders/partimages/DAC6574.jpg

