TEAMNAME

Testing Environment for Accessing and Monitoring
Networked Automation and Measurement Equipment

Christian Hurst
Braden Rosengren
Antonio Montoya
Benjamin Wiggins
Chris Little

Senior Design Spring 2017 MAY1733

1 Introduction
1.1 Project statement
1.2 Purpose
1.3 Goals

2 Design Details and Method
2.1 Design Details
2.2 Design Specifications
2.2.1 Non-Functional Specifications
Software Requirements
Hardware Requirements
2.2.2 Functional Specifications
Software Requirements
Hardware Requirements
2.3 Design Analysis

3 Implementation

4 Testing and Development
4.1 Interface Specifications
4.2 Hardware/Software
4.3 Design Process
4.4 Testing

4.4.1 Hardware Testing
4.4.2 Software Testing

5 Results and Conclusions

Appendix I Operation Manual
1 Building and Installation
2 Creating and Running Tests
3 Viewing the Results
4 Development Resources

Appendix II Alternative Designs
Original Project Scope
The Operating System
The Web Server

Appendix III Citations and Resources

Appendix IV Glossary of Terms

Ul U1 U1 U1 U1 U1 U1 U1 e N NN DN

~

11
11
11
11
12
12
12

13

14
14
15
17
17

18
18
18
18

19
20

1 Introduction

1.1 Project statement

We have set out to create an open source platform for hardware test automation and
remote test execution and data collection. The platform allows users access remotely
through any web browser, and facilitates the uploading and execution of custom test
scripts as well as the viewing and downloading of test results. The platform is built on a
Raspberry Pi 3. The Raspberry Pi hosts a web server, and a user interface with the
system through the browser based user interface (UI).

The Raspberry Pi can deploy, at the user’s command, user defined and uploaded test
scripts, store and report back test results, and allow the user to download the raw test
data or view it in their browser. The Raspberry Pi can control and query results from
common laboratory equipment such as power supplies, digital multimeters, signal
generators, and oscilloscopes. The platform also provides the ability to interface with
digital or mixed signal devices through the Raspberry Pi’s GPIO pins using variable level
shifted outputs set to the device’s operating voltage.

1.2 Purpose

This platform allows individuals seeking to perform device characterization, or to
automate other laboratory tests, to easily design and implement tests that can be
launched remotely. It also facilitates remote data collection. The original project was
conceived with users of wafer probing stations in mind, however the functionality of
allowing remote test execution and result reporting has a wide array of usage cases, for
example, allowing remote device demonstration for instructive or educational purposes.

In addition to allowing for remote access, it provides a cost-effective platform that can be
used to implement identical laboratory setups at multiple locations that support uniform
test code, which could be of great use to teams working in parallel or wishing to do
similar characterization or verification on similar or related devices. The platform also
offers an excellent opportunity to allow access to test automation to a wider audience, as
an open source solution would provide an inexpensive alternative to costly software and
hardware that is currently the industry standard.

1.3 Goals

With this project we hope to demonstrate the viability of the concept outlined in the
Project Statement. The scope of this project is too broad to expect to be able to deliver a
polished and robust platform with only two semesters of work. It is however, completely
reasonable to target a demonstration of the utility of the platform in an arbitrary usage
case, such as demonstrating a laboratory exercise from a circuits course. Developing a
proof of concept will therefore be our primary goal, and expanding and enhancing
functionality will be a secondary goal. We will produce supporting documentation

outlining potential usage cases and documenting the additional work required to adapt
the platform to be viable for a broader range of usage cases.

e Primary Project Goals
o Due to the broad scope of the project, our primary goal is to demonstrate
the viability of the concept outlined in the Project Statement
o Demonstrate the utility of the platform with an arbitrary usage case.
m Demonstrate control over common pieces of test equipment
m Demonstrate data collection capabilities with a laboratory exercise
from a circuits course
o Produce an operation manual to allow new users to implement the
platform
o Produce documentation showing how to expand the platform’s
functionality
e Secondary (Stretch) Goals
o Expand upon the list of proposed usage cases and implementation plans
m Create proposal for new test platform and equipment configuration
for EE 201 and/or EE 230
o Create interface API for hypothetical equipment set for EE 201/230

2 Design Details and Method
2.1 Design Details

The purpose of our project was to create a system that would allow access, remote or
local, to laboratory electrical testing equipment. It is designed to be accessible and usable
regardless of the operating system or device being used. The UI will be accessible via any
web browser of the user’s choice. All server hosting, device communications, and test
execution will be handled by a Raspberry Pi 3 that is directly connected to electrical
testing equipment via USB, LAN, and/or IEEE-488 (or GPIB) bus.

The project was split into hardware and software components handled by their
respective subteams. The software subteam implemented the web UI using a web server
hosted on the Raspberry Pi. The browser-based UI allows the users to upload custom test
scripts, schedule and execute tests, and easily collect and view test results, with the
option to download the results directly to their personal computer.

The test execution software is implemented in Python and stores the tests as scripts. It
stores the results or individual tests in JSON files and these files can be accessed by the
user for viewing and download.

The server and the test runner must be able to communicate to send information about
the tests to the user. This is accomplished through use of a Unix Socket. The test runner
software must interface with the testing equipment through GPIB interface which will be
accessible to the Raspberry Pi by a number of methods (the IEEE-488 bus, USB, and
Ethernet connections).

2.2 Design Specifications
2.2.1 Non-Functional Specifications

Software Requirements
e Web interface is well organized and self explanatory
e C(Create instruction manual for building software package

Hardware Requirements
e Connectors are spaced in such a way so as to leave room to easily connect
peripherals
e Demonstration of some potential usage cases and proof of concept

2.2.2 Functional Specifications

Software Requirements

e Web server and browser-based Ul
o Allow user to easily define and run tests remotely
o Documented API allows user to define new tests

e Raspberry Pi must be able to interface with the test equipment over:
o IEEE-488 bus
o USB connection
o Connect to devices over the local network (Ethernet)

e System must begin all required processes upon startup without user intervention

Hardware Requirements
e PCB breakout board for computer to chip communication
SPI and I*C headers provided
PCB should implement level shifting of digital control signals to acceptable
ranges for use on any device under test
o PCB should fit onto the Raspberry Pi as an expansion board

2.3 Design Analysis

The design of our project was driven primarily by the functionality outlined above. Since
our project is based on being able to control various test equipment we needed to
support GPIB, the bus over which most electrical lab equipment can be controlled.
Additionally, since I*C and SPI are commonly used on more complex ICs, having support
for level-shifted GPIO communication from the Raspberry Pi was also necessary.

We needed a remotely accessible user interface that was capable of rendering content
dynamically depending on the tests uploaded and scheduled by the user. For this we
decided to implement our interface using Python CGI scripts and the lighttpd web server.

Our choice of language was driven by our desire for an easily extensible system. Python

was chosen as the language of our implementation since it is easy for new users to learn

and has a large online community. Additionally, its straight forward approach to module
support makes it ideal for defining tests and API files.

Additional details regarding our design choices can be found in Appendix II.

3 Implementation

The project was handled by hardware and software subteams. The software subteam
handled the implementation of the web user interface using the lighttpd web server on
the Raspberry Pi. The browser-based UI allows the users to upload custom test scripts,
schedule and execute tests, and easily collect and view test results, with the option to
download results directly to their personal computer. The web server communicates to
the rest of the system using Unix Sockets. An overview of the software communication
paths can be seen in Figure 1 below.

The test runner software uses a Python based interpreter to parse the user’s scripts and
convert user instructions into GPIB commands that can be sent to the lab equipment
attached to the Raspberry Pi. These conversions are handled by the hardware AP, a
series of Python modules. The test runner interfaces with the lab equipment over GPIB
through several interfaces. The IEEE-488 bus can be accessed through a GPIB-USB
Controller [4] that presents itself to the system as a virtual serial port. This makes it easy
to send commands and receive results from the lab equipment since communication is
achieved through simple file operations. Devices connected directly through USB behave
similarly. Devices connected over the local network can be communicated to using web
sockets.

The hardware subteam designed a variable logic level shifter in order to interface with
digital devices that operate at logic levels different from the Raspberry Pi’s 3.3V GPIO
bank. The PCB the variable logic level shifter circuits are placed onto is designed to fit
directly onto the Raspberry Pi’s external pins for easy use with minimal setup. An
overview of the hardware connections can be seen in Figure 2 below.

The level shifter schematic can be seen in Figure 3. The breakout board is detailed in
Figure 4 (schematic view) and Figure 5 (layout). The completed fabricated board can be
seen (without pin headers attached) on the document cover.

As can be seen in Figure 4 the breakout board is simply many individual logic level
shifters (Figure 3). It is designed for the voltage from the GPIO pins to be greater than
than the voltage of the DUT. But in cases where the DUT has a greater voltage than the
GPIO pins the board will accommodate a reverse polarity of up to -5 volts.

IEEE-488, USS, Matwark

Figure 1 A block diagram outlining the system and modules

Level Shifter

Figure 2 A block diagram outlining the system’s hardware connections

Lv

R1

%mkn
| 7D

HV

R2
10kQ

Ao

Q2

BSS138

) HV1‘

Figure 3 Schematic of Single Level Shifter

frer ol
i3 i
e
o
—
me
A 1
iy
™
s
AL
e
i 1
. —| ' A,
Gl ME| il L ik
L |Rommel
L5 3o | R L]
Ao £ prmeiE ™
ERDOI ap_e 0 7
EROl a 0
l“,] | Rl :H::nt :llﬁ T
APLEEY I £l
) amEEl aa
L) —— L)
™ ™o L
il e LI
- Aom EHos - M2
b {.1="} EHD B =
mn AOn euoc B
X mOon Gaop L
1 on chne 3
nx AOn cury f LE]
i om cank [
= ACE sunn L L
{.1="1} n!u‘
Ter |I E = na
1Y [LE B
3 i
T | I
0= n2
W | =
H 0
b — L
ma
x |
5 (o]
W
LiE]
t—]
nm
e

Figure 4 Schematic of Breakout Board

AR W 0 A

LB D2

T8 T4 T1 T2

e L

T3 14 T5 16 il
o} Lear] I~ Liw] .Li_'i =i o]
afo ol alll o «c o= of

Sv2

@eoeeoonadl
8 1

Figure 5 Layout of Breakout Board

10

4 Testing and Development

4.1 Interface Specifications
GPIB Communication:

e Communication between Raspberry Pi and test equipment requires a GPIB
module for older devices only supporting the IEEE-488 bus
e Newer devices communicate using GPIB commands over USB or Ethernet
Device Under Test Communication:
e Breakout board has I2C, SPI and GPIO pins with variable logic level shifting

4.2 Hardware/Software
Web Server with CGI

e Can serve dynamic content (such as current test queue) over HTTP
e Can communicate with test runner process
o Request information about and results from tests
o Upload and schedule tests
o Download test results
e Can send commands over GPIB through testing API or GPIB Console
Test Runner Process
e Executes tests specified by users
e Implements testing API to communicate over the Raspberry Pi’s busses and GPIB
e Stores results of tests
e Receives commands from the user interface

4.3 Design Process

The generation of the Kernel, filesystem and other programs for the Raspberry Piis a
tool called Buildroot. Buildroot uses a collection of configuration files and source
packages (both existing open source software and our own code) to generate a Linux
system image. Once this was done, we were successfully able to load the image onto an
SD card and boot it on the Raspberry Pi.

Once the decision to use Buildroot was made, the software framework had to be decided
on. A common web server application to use on with Buildroot is lighttpd. This sets up a
basic framework on the Raspberry Pi that allows the users to create a website using
static HTML files and CGI scripts stored on the device. In order to test the suitability of
lighttpd for the scope of our project, we created a simple IO system that could be used to
write information into a file stored on the Raspberry Pi and then displayed the
information on the website. Because the test scripts will be stored in files, this test results
suggest that this process can be expanded upon to allow users to create more
complicated tests.

During this time, we also researched the programing languages in order to decide the

"

one that best fit our needs. The two main contenders were Perl and Python. In the end,
we concluded that while Pearl has many features for parsing text that make it more
efficient than Python, Python is a more readable and beginner-friendly language that
most of the users of this project could easily pick up and debug if necessary.

We then proceeded to research how to implement communication between the
Raspberry Pi and test equipment over GPIB. After some research, we discovered the
Prologix controller [4] simply opened a virtual serial port on the Raspberry Pi that
corresponded to the GPIB connection and could be controlled through simple commands
written to it as if it were a file. In order to confirm this, we attached the Raspberry Pi via
GPIB to a signal generator in the lab and made a script to change the magnitude,
frequency and waveform of the signal generator’s output. We found similar results
regarding devices connected over USB.

4.4 Testing
4.4.1 Hardware Testing

e The level shifter was initially tested in simulation and constructed on a
breadboard to confirm its behavior.

e The breakout board was verified through measurement to ensure it performed as
expected.

4.4.2 Software Testing

e Individual features were tested upon implementation.
e Software was systematically tested with actual run-time scenarios
o Variety of scenarios in order to look for points of failure
o Scenarios include:
m Queueing multiple tests
m Queueing tests while a test is running
m Sending console commands while a test is running
m Viewing and downloading test results
o Intended to mimic actual product use
e Testimages were generated from clean builds to prevent possible issues from
previous versions of software

12

5 Results and Conclusions

We have set out to create an open source platform for hardware test automation and
remote test execution and data collection. The platform allows users to access it remotely
through any web browser, and allows them to upload and execute custom test scripts as
well as to view and download results.

This platform is targeted towards individuals seeking to perform device characterization,
implement testing automation, and facilitate remote data collection. The functionality of
our platform has a wide array of usage cases from automating hardware verification
testing to allowing remote device demonstration for instructive or educational purposes.
In addition to providing this functionality, it does so through a cost-effective platform
based on open-source software and low-cost hardware.

13

Appendix | Operation Manual

Note: The most up-to-date version of the Operating Manual can be found under “Help” in
the main menu on the web interface.

T.E.AMMAM.E

wnliy: Hegrd BWS Vol sae

1 Building and Installation

To begin using TEAMNAME to automate testing you must first build the testing
environment image. In the root of the repository is the script build.sh which when ran
produces a directory called teamname_output containing the output from Buildroot
including the file teamname_output/output/images/sdcard.img containing the complete
system image.

ammm mJon i=

After generating sdcard.img, write it to an SD card through the following steps [10]:

1. Insert a Micro SD card into the computer (note: this may require an adapter)
2. Use df -h toview the mounted disks and find the sd card’s location in /dev/ (for
example /dev/sdb)
Unmount the card using umount /dev/sdb* (this unmounts all partitions)
4. Usedd if=sdcard.img of=/dev/sdb bs=4M to write the image
a. This requires root privileges
b. Be careful that the correct arguments are specified for the if and of
arguments when using the dd utility

w

14

Below is sample terminal output for building and installing TEAMNAME to an SD card.
Note that the card may be named differently depending on your system. Also note that
here output from ./build.sh has been suppressed for the sake of demonstration.

B S ™ Terminal File Edit View Search Terminal Help
TEAMNAME : hwrlm 5 1s

board Config.in devtools external.desc
build.sh nfigs documentation external.mk
TEAMMAME :hwrlm § ./build.sh = /dev/null

TEAMNAME :hwrlm S cd ../ teamname_outputfoutputfimac
TEAMNAME : images 5 1s

bcm2710-rpl-3-D.dth kernel-marked

boot.vfat rootfs.ext2

TEAMNAME : inages § df -h

Fllesystem Size Used Avail

udewv 1.5G 8 1.5G

tmpfs 294M B.6M 2B6M

Jdev/sdal 291G G 259G

tmpfs 1.5G 256K 1.5G
tmpfs 5.8M 4.8K 5.8M
tmpfs 1.5G !
tmpfs

1995-4e61-2631-86a572b344

TEAMMNAME : Lmage umount [dev/sdb*

umount: fdew/sdb: not mounted

TEAMNAME : ir 5 sudo dd if=sdcard.img of=/dev/sdb bs=4M
[sude] password for user:

28+1 records in

2B+1 records out

117676544 bytes (118 MB, 112 MiB) copied,

TEAMNAME : images §

Once the SD card has been written, insert it into the Raspberry Pi. Plug in all desired
peripherals and test equipment. Connect it to the local network and power it on.

Note: The device will be assigned a random IP address depending on your local network.
See the manual for your network hardware or contact your network administrator to
obtain its IP address.

2 Creating and Running Tests

Tests can be created in your text editor of choice. For Python-based tests, all code
(including import statements) should be contained in a function called
__test(GPIB_Context). It should return a JSON object containing all variables (stored as
lists) that you wish to save. An example test provided below sets the voltage on the
Agilent 33220A function generator and confirms that the voltage was set. It then reads
the AC voltage seen by the Agilent 34410A digital multimeter. It ends by returning the
values it stored.

15

def _test(GPIB_Context):
Import APIs for devices we are using
import Agilent33220A # API for the Function Generator
import Agilent34401A # API for the DMM

import time

Allocate storage for data we wish to save
testVars = {}

testVars['v_out'] = []

testVars['v_set'] =[]

testVars['v_in_rms'] =[]

foriinrange(1,10):
testVars['v_out'].append(i)
Agilent33220A.Agilent33220A_set_voltage(GPIB_Context, i)
time.sleep(0.5)
testVars['v_set'].append(float(Agilent33220A.Agilent_33220A_get_voltage(GPIB_Context)))
testVars['v_in_rms'].append(float(Agilent34410A.Agilent34410A_measure_ac_voltage(GPIB_Context)))

return testVars

Once a test is created and saved, it can be uploaded to the device using the “Add/Remove
Tests” panel. Choose a name and a provide a description before selecting a file to upload.
Then click “Upload test” to install it in TEAMNAME. (Here tests can also be removed with
the “Delete test” button.)

T.E.A.M.N.A.M.E.

Install and Remove Tests

To run a test, navigate to the “Schedule Tests” panel. Select “Add to queue” at add a test
to the queue. If the queue is running, the test will begin execution, otherwise navigate to
the “View Test Queue” panel and click the “Start queue” button.

T.E.AM.N.AM.E.

Add test to the queue

Tost Name Deseription Options

16

3 Viewing the Results

Once a test has completed, TEAMNAME stores the results. To view these results, navigate
to the “View Results” panel. Find the entry for our test and select either the “Download
JSON” or the “View results” button. The first option allows you to download the complete
results including and errors thrown by the test as JSON data. The second option opens an
in-browser viewer that can plot variables from the results against each other. It also
provides options to download the figure or to download the plotted variables as a CSV
spreadsheet.

|'% Control Pannel x

(€ @ localhost @ ||Q sea *Ba $ =

[WBockmarks v |¥teamname

T.E.A.M.N.A.M.E.

Results: Read RMS Voltage

0.007

@
E . .
.:‘ b 4
B o
0.006 . . . *
0.005
0 1 2 3 4 5 6 7 8 9 10
v_set
-variable: v_set[9] ~ | y-variable: | v_in_rms[¢] v | Save SVG Save CSV

Copyright @ 2016-2017

11

4 Development Resources

To expand TEAMNAME’s functionality to new test equipment we have made an effort to
balance the ability of third parties to build on the available set of supported devices,
while allowing the project managers to maintain control over the fundamental structure
of the device drivers and server code. In order to allow the program managers to
maintain the freedom to change the formatting of the device drivers, which are written
in python, as might be required in the future. To achieve this, we set out to refine the
process of building out new device driver sets to the most basic information as possible.
Because GPIB is an IEEE standard, we feel that by requiring third parties to populate a
list of available GPIB commands, or as many as they might require for a project, so that
the formatting of the user generated content is unlikely to ever need to change. The API
Generation tool works as follows, the developer populates a list of functions that they
would like to make available to users writing tests. An example of the formatting for the
text file that the developers would write is shown below.

Keysight20xx #DEVICE NAME
Keysight 20xx Family of Oscilloscopes #DEVICE DESCRIPTION
Oscilloscope #DEVICE TYPE
TEEE-488 #DEVICE CONNECTION
Keysight2@xx.py H#TARGET FILE

#END HEADER
#NOTES SECTION

HHSTART _DEFINES

_clear_status {clear_device status}

_event status enable Q {enable event status {check ESE state}} <mask_argument>
##END

A provided perl script “api_gen.pl” will translate the above example into a python file
that provides a driver for the Keysight20xx series oscilloscopes. Based on the two lines in
the #START_DEFINES section, only two families of functions will be available to users
attempting to script test for this device. First the clear device status function will be
exposed to test writers as the function “clear_device_status”. When called, the string
“*CLS” will be sent to the device. The second line actually creates both a function and a
query form of the function signified by the “Q”. The command form of the function is
exposed to the user by the alias “enable_event_status”, while the query form is exposed
as the alias “check_ESE_state”. Any alias or list of aliases can be entered into the braces
to specify the alias/es that can be used by to access a specific action.
“<mask_argument>” indicates the name by which the single argument of the command
form of the function will be internally referenced. The output of the perl script based on
the above command list is shown below.

18

GPIB_Context.send(/device_datal, command)

GPIB_Context.read(device_data))

device data - {

‘name’: 'Keysight

‘description’: ' rsigl : amily of Oscilloscopes’,
'Type': 'Oscilloscope’,
‘connection’: 'IEEE-488°,

pEhn 18
*functions’:

: Keysight28xx_ clear status,
Keysight20@xx_event_status_enable_query,
: Keysight28xx_event_status_enable

The template statement that is included in the command list template provided with the
project is shown below.

example function {desired user alias func y_alias} +coMM :FUNCtion <required input values> [Optional Arguments {avail to_required
" ' ere t

P a
use 'Q0" for query only

19

Appendix Il Alternative Designs

Original Project Scope

This project was originally proposed by IBM to be a proprietary remote hardware testing
environment. The setup IBM had would only work on a specific model of computer
running a specific firmware. They proposed the idea to us as a server version of this
setup that could be accessed from any operating system through a web browser to avoid
the struggles they were having with connecting to their current software.

The hardware portion of our project was originally conceived to be a breakout board to
communicate between the Raspberry Pi and an embedded microcontroller on a silicon
wafer.

Due to numerous strategic and legal hurdles, IBM’s legal team eventually pulled their
support for IBM’s ongoing involvement in the project.

The Operating System

When we began development on the project we chose to use the Raspbian Linux
Distribution [6] as our platform’s operating system. This seemed a reasonable starting
place since our project uses a Raspberry Pi as its hardware platform. As development of
the project progressed, however, we realised that Raspbian did not meet all of our
project’s needs.

When installing our project using Raspbian, we first needed to flash an SD card with the
Raspbian image [10] before booting up the Raspberry Pi to install the web server, test
runner, and other environment files. Additionally, Raspbian did not include the USBTMC
driver necessary to communicate with test and measurement equipment over USB. For
these reasons we reimplemented our project as a package with the Buildroot project [1],
a build automation tool that allowed us to design and build a complete Linux system
image containing all of our project code as well as any external packages we needed for
the project to function. This image could then be written to an SD card and would
immediately provide a working system on startup.

The Web Server

We began our project using the Apache web server to deliver dynamically-generated
content using CGI and Python scripts [9]. When we moved from Raspbian to Buildroot it
became convenient to switch to the lighttpd web server [2] due to its simpler setup
process for enabling CGI [3] and due to the convenience of Buildroot’s out-of-the-box
support for it.

20

Appendix Ill Citations and Resources

[1] The Buildroot Project: https://buildroot.org/

[2] The Lighttpd Web Server: https://www.lighttpd.net/

[3] CGI on Lighttpd: https://wiki.archlinux.org/index.php/lighttpd
[4] Prologix GPIB-USB Controller: http://prologix.biz/

[5] Linux GPIO Sysfs Interface: https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

[6] Raspbian Download: https://www.raspberrypi.org/downloads/raspbian/

[7] Buildroot Documentation: https://buildroot.org/downloads/manual/manual.html

[8] Bi-Directional Level Logic Converter Overview:
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

[9] Dynamic Content with CGI: https://httpd.apache.org/docs/2.4/howto/cgi.html

[10] Flashing an image to an SD card:
https://www.raspberrypi.org/documentation/installation/installing-images

21

https://www.lighttpd.net/
https://wiki.archlinux.org/index.php/lighttpd
https://buildroot.org/
http://prologix.biz/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://httpd.apache.org/docs/2.4/howto/cgi.html
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://buildroot.org/downloads/manual/manual.html

Appendix IV Glossary of Terms
DUT: Device under test

GPIB: General Purpose Interface Bus. Also known as IEEE 488, is a short-range
communication interface.

GPIO: General Purpose Input and Output. Usually refers to digital communication pins
on the Raspberry Pi.

22

